A New Technology for Detecting Cerebral Blood Flow: A Comparative Study of Ultrasound Tagged NIRS and Xe-SPECT
نویسندگان
چکیده
There is a need for real-time non-invasive, continuous monitoring of cerebral blood flow (CBF) during surgery, in intensive care units and clinical research. We investigated a new non-invasive hybrid technology employing ultrasound tagged near infrared spectroscopy (UT-NIRS) that may estimate changes in CBF using a cerebral blood flow index (CFI). Changes over time for UT-NIRS CFI and Xenon single photon emission computer tomography (Xe-SPECT) CBF data were assessed in 10 healthy volunteers after an intravenous bolus of acetazolamide. UT-NIRS CFI was measured continuously and SPECT CBF was measured at baseline, 15 and 60 min after acetazolamide. We found significant changes over time in CFI by UT-NIRS and CBF by SPECT after acetazolamide (P B 0.001). Post hoc tests showed a significant increase in CFI (P = 0.011) and SPECT CBF (P < 0.001) at 15 min after acetazolamide injection. There was a significant correlation between CFI and SPECT CBF values (r = 0.67 and P B 0.033) at 15 min, but not at 60 min (P C 0.777). UT-NIRS detected an increase in CFI following an acetazolamide bolus, which correlated with CBF measured with Xe-SPECT. This study demonstrates that UT-NIRS technology may be a promising new technique for non-invasive and real-time bedside CBF monitoring.
منابع مشابه
A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT.
There is a need for real-time non-invasive, continuous monitoring of cerebral blood flow (CBF) during surgery, in intensive care units and clinical research. We investigated a new non-invasive hybrid technology employing ultrasound tagged near infrared spectroscopy (UT-NIRS) that may estimate changes in CBF using a cerebral blood flow index (CFI). Changes over time for UT-NIRS CFI and 133Xenon ...
متن کاملDepth Discrimination in Acousto-Optic Cerebral Blood Flow Measurement Simulation
Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mos...
متن کاملCerebral Autoregulation Monitoring with Ultrasound-Tagged Near-Infrared Spectroscopy in Cardiac Surgery Patients.
BACKGROUND Individualizing mean arterial blood pressure (MAP) based on cerebral blood flow (CBF) autoregulation monitoring during cardiopulmonary bypass (CPB) holds promise as a strategy to optimize organ perfusion. The purpose of this study was to evaluate the accuracy of cerebral autoregulation monitoring using microcirculatory flow measured with innovative ultrasound-tagged near-infrared spe...
متن کاملAbnormal cerebral blood flow in methamphetamine abusers assessed by brain perfusion single emission computed tomography
Introduction:Amphetamines are central nervous system (CNS) stimulant substances and amphetamine abuse is considered a growing problem in our country. Previous studies revealed destructive effects of amphetamines on metabolism, perfusion and structure of brain. The aim of current study was evaluating regional cerebral blood flow (rCBF) disturbances in methamphetamine (MA) abuser...
متن کاملEffects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cer...
متن کامل